1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
use crate::op_tree::{OpSetMetadata, OpTreeNode};
use crate::query::{binary_search_by, QueryResult, TreeQuery};
use crate::types::{Key, ListEncoding, Op, HEAD};
use std::cmp::Ordering;
use std::fmt::Debug;
#[derive(Debug, Clone, PartialEq)]
pub(crate) struct SeekOpWithPatch<'a> {
op: Op,
pub(crate) pos: usize,
pub(crate) succ: Vec<usize>,
found: bool,
encoding: ListEncoding,
pub(crate) seen: usize,
pub(crate) last_width: usize,
last_seen: Option<Key>,
pub(crate) values: Vec<&'a Op>,
pub(crate) had_value_before: bool,
}
impl<'a> SeekOpWithPatch<'a> {
pub(crate) fn new(op: &Op, encoding: ListEncoding) -> Self {
SeekOpWithPatch {
op: op.clone(),
succ: vec![],
pos: 0,
found: false,
encoding,
seen: 0,
last_width: 0,
last_seen: None,
values: vec![],
had_value_before: false,
}
}
fn lesser_insert(&self, op: &Op, m: &OpSetMetadata) -> bool {
op.insert && m.lamport_cmp(op.id, self.op.id) == Ordering::Less
}
fn greater_opid(&self, op: &Op, m: &OpSetMetadata) -> bool {
m.lamport_cmp(op.id, self.op.id) == Ordering::Greater
}
fn is_target_insert(&self, op: &Op) -> bool {
op.insert && op.elemid() == self.op.key.elemid()
}
/// Keeps track of the number of visible list elements we have seen. Increments `self.seen` if
/// operation `e` associates a visible value with a list element, and if we have not already
/// counted that list element (this ensures that if a list element has several values, i.e.
/// a conflict, then it is still only counted once).
fn count_visible(&mut self, e: &Op) {
if e.elemid() == self.op.elemid() {
return;
}
if e.insert {
self.last_seen = None
}
if e.visible() && self.last_seen.is_none() {
self.seen += e.width(self.encoding);
self.last_seen = Some(e.elemid_or_key())
}
}
}
impl<'a> TreeQuery<'a> for SeekOpWithPatch<'a> {
fn query_node_with_metadata(
&mut self,
child: &'a OpTreeNode,
m: &OpSetMetadata,
ops: &[Op],
) -> QueryResult {
if self.found {
return QueryResult::Descend;
}
match self.op.key {
// Special case for insertion at the head of the list (`e == HEAD` is only possible for
// an insertion operation). Skip over any list elements whose elemId is greater than
// the opId of the operation being inserted.
Key::Seq(e) if e == HEAD => {
while self.pos < child.len() {
let op = &ops[child.get(self.pos).unwrap()];
if op.insert && m.lamport_cmp(op.id, self.op.id) == Ordering::Less {
break;
}
self.count_visible(op);
self.pos += 1;
}
QueryResult::Finish
}
// Updating a list: search for the tree node that contains the new operation's
// reference element (i.e. the element we're updating or inserting after)
Key::Seq(e) => {
if self.found || child.index.ops.contains(&e.0) {
QueryResult::Descend
} else {
self.pos += child.len();
// When we skip over a subtree, we need to count the number of visible list
// elements we're skipping over. Each node stores the number of visible
// elements it contains. However, it could happen that a visible element is
// split across two tree nodes. To avoid double-counting in this situation, we
// subtract one if the last visible element also appears in this tree node.
let mut num_vis = child.index.visible_len(self.encoding);
if num_vis > 0 {
// FIXME: I think this is wrong: we should subtract one only if this
// subtree contains a *visible* (i.e. empty succs) operation for the list
// element with elemId `last_seen`; this will subtract one even if all
// values for this list element have been deleted in this subtree.
if let Some(last_seen) = self.last_seen {
if child.index.has_visible(&last_seen) {
num_vis -= 1;
}
}
self.seen += num_vis;
// FIXME: this is also wrong: `last_seen` needs to be the elemId of the
// last *visible* list element in this subtree, but I think this returns
// the last operation's elemId regardless of whether it's visible or not.
// This will lead to incorrect counting if `last_seen` is not visible: it's
// not counted towards `num_vis`, so we shouldn't be subtracting 1.
self.last_seen = Some(ops[child.last()].elemid_or_key());
}
QueryResult::Next
}
}
// Updating a map: operations appear in sorted order by key
Key::Map(_) => {
let start = binary_search_by(child, ops, |op| m.key_cmp(&op.key, &self.op.key));
self.pos = start;
QueryResult::Skip(start)
}
}
}
// Only called when operating on a sequence (list/text) object, since updates of a map are
// handled in `query_node_with_metadata`.
fn query_element_with_metadata(&mut self, e: &'a Op, m: &OpSetMetadata) -> QueryResult {
match self.op.key {
Key::Map(_) => {
if !self.found {
// Iterate over any existing operations for the same key; stop when we reach an
// operation with a different key
if e.key != self.op.key {
return QueryResult::Finish;
}
// Keep track of any ops we're overwriting and any conflicts on this key
if self.op.overwrites(e) {
// when we encounter an increment op we also want to find the counter for
// it.
if self.op.is_inc() && e.is_counter() && e.visible() {
self.values.push(e);
}
self.succ.push(self.pos);
self.last_width = e.width(self.encoding);
if e.visible() {
self.had_value_before = true;
}
} else if e.visible() {
self.values.push(e);
}
// Ops for the same key should be in ascending order of opId, so we break when
// we reach an op with an opId greater than that of the new operation
if m.lamport_cmp(e.id, self.op.id) == Ordering::Greater {
self.found = true;
return QueryResult::Next;
}
self.pos += 1;
} else {
// For the purpose of reporting conflicts, we also need to take into account any
// ops for the same key that appear after the new operation
if e.key != self.op.key {
return QueryResult::Finish;
}
// No need to check if `self.op.overwrites(op)` because an operation's `preds`
// must always have lower Lamport timestamps than that op itself, and the ops
// here all have greater opIds than the new op
if e.visible() {
self.values.push(e);
}
}
QueryResult::Next
}
Key::Seq(_) => {
let result = if !self.found {
// First search for the referenced list element (i.e. the element we're updating, or
// after which we're inserting)
if self.is_target_insert(e) {
self.found = true;
if self.op.overwrites(e) {
// when we encounter an increment op we also want to find the counter for
// it.
if self.op.is_inc() && e.is_counter() && e.visible() {
self.values.push(e);
}
self.succ.push(self.pos);
self.last_width = e.width(self.encoding);
}
if e.visible() {
self.had_value_before = true;
}
}
self.pos += 1;
QueryResult::Next
} else {
// Once we've found the reference element, keep track of any ops that we're overwriting
let overwritten = self.op.overwrites(e);
if overwritten {
// when we encounter an increment op we also want to find the counter for
// it.
if self.op.is_inc() && e.is_counter() && e.visible() {
self.values.push(e);
}
self.succ.push(self.pos);
self.last_width = e.width(self.encoding);
}
// If the new op is an insertion, skip over any existing list elements whose elemId is
// greater than the ID of the new insertion
if self.op.insert {
if self.lesser_insert(e, m) {
// Insert before the first existing list element whose elemId is less than that
// of the new insertion
QueryResult::Finish
} else {
self.pos += 1;
QueryResult::Next
}
} else if e.insert {
// If the new op is an update of an existing list element, the first insertion op
// we encounter after the reference element indicates the end of the reference elem
QueryResult::Finish
} else {
// When updating an existing list element, keep track of any conflicts on this list
// element. We also need to remember if the list element had any visible elements
// prior to applying the new operation: if not, the new operation is resurrecting
// a deleted list element, so it looks like an insertion in the patch.
if e.visible() {
self.had_value_before = true;
if !overwritten {
self.values.push(e);
}
}
// We now need to put the ops for the same list element into ascending order, so we
// skip over any ops whose ID is less than that of the new operation.
if !self.greater_opid(e, m) {
self.pos += 1;
}
QueryResult::Next
}
};
// The patch needs to know the list index of each operation, so we count the number of
// visible list elements up to the insertion position of the new operation
if result == QueryResult::Next {
self.count_visible(e);
}
result
}
}
}
}
#[cfg(test)]
mod tests {
use super::{super::seek_op::tests::optree_with_only_internally_visible_ops, SeekOpWithPatch};
use crate::{
op_tree::B,
types::{ListEncoding, ObjId},
};
#[test]
fn test_insert_on_internal_only_nodes() {
let (set, new_op) = optree_with_only_internally_visible_ops();
let q = SeekOpWithPatch::new(&new_op, ListEncoding::List);
let q = set.search(&ObjId::root(), q);
// we've inserted `B - 1` elements for "a", so the index should be `B`
assert_eq!(q.pos, B);
}
}